Capacitive sensing + Machine Learning

During a four weeks project on Play and Ludic Interaction, I have explored capacitive sensing as a starting point for the project. During the first week my group and I have explored the qualities of different conductive materials when combined with capacitive sensing. We have been working with the Tact library by NANDstudio, which is capable to capture very rich data from the sensor. Different materials and objects each affordance different interactions, and this also affect which spectrum readings can be read by the sensor. E.g. when a jar of water is used as a capacitive sensor it peaks when the water is touched. Where a bag of wet sand peaks when squished tightly.

Through these explorations we have found especially two very interesting ways of using capacitive sensing:

  1. Its possible to create a “chain” of sensors that works through non-conductive materials (wood, glass, acrylic etc.). E.g. we had a path of aluminium foil that could sense proximity and touch on a jar of water, through a 4mm layer of wood/acrylic.
  2. Classifying the data with Machine learning (we used Wekinator) can be used to recognise different gestures very well. This is mainly due to the rich data from the Tact library. We used 32 inputs pr. Sensor.

These findings have been the core for our project in Play and Ludic Interaction, and the mechanics we developed can be seen on the gifs/video. Hopefully I can soon share how we have applied this technology in a concept.


Ice cube painting toy

During a 2 days project of the course Play And Ludic Interaction, we were set to explore the creation of toys and playful interactions based on a material. Together with my group I was set to explore water. This resulted in a series of small experiments that each explored playful expression and characteristics of water.

The findings from this explorative process let to several ideas to water based toys. We ended up prototyping a maze that used ice cubes with food colouring, to paint abstract paintings. Inspired by generative art, our idea was to have our 11 co-students to each navigate an ice-cube through the maze to create individual paintings. The final toy, and the experiments can be seen below.